聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策******
中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。
美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。
国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。
中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。
中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。
美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。
中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。
2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完)
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.